Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mol Biomed ; 3(1): 21, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1938379

ABSTRACT

A virus enters a living organism and recruits host metabolism to reproduce its own genome and proteins. The viral infections are intricate and cannot be completely removed through existing antiviral drugs. For example, the herpes, influenza, hepatitis and human immunodeficiency viruses are a few dreadful ones amongst them. Significant studies are needed to understand the viral entry and their growth in host cells to design effective antivirals. This review emphasizes the range of therapeutical antiviral drugs, inhibitors along with vaccines to fight against viral pathogens, especially for combating COVID-19. Moreover, we have provided the basic and in depth information about viral targets, drugs availability, their mechanisms of action, method of prevention of viral diseases and highlighted the significances of anticoagulants, convalescent plasma for COVID-19 treatment, scientific details of airborne transmission, characteristics of antiviral drug delivery using nanoparticles/carriers, nanoemulsions, nanogels, metal based nanoparticles, alike the future nanosystems through nanobubbles, nanofibers, nanodiamonds, nanotraps, nanorobots and eventually, the therapeutic applications of micro- and nanoparticulates, current status for clinical development against COVID-19 together with environmental implications of antivirals, gene therapy etc., which may be useful for repurposing and designing of novel antiviral drugs against various dreadful diseases, especially the SARS-CoV-2 and other associated variants.

2.
J Tradit Complement Med ; 12(1): 90-99, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1814843

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome-2019 has affected more than 190 million people around the world and caused severe crises throughout the globe. Due to rapid mutation in the viral genome, its became important to simultaneously improvise the host immunity while targeting viral proteins to reduce the severity of infection. AIM: The current computational work focuses on multi-level rigorous screening of 47 medicinal plant-based phytochemicals for discovering effective phytochemical inhibitors against the host and viral targets. EXPERIMENTAL PROCEDURE: A total of 586 phytochemicals were analyzed in detail based on their drug-likeness, pharmacological properties, and structure-based activity against the viral proteins (Spike glycoprotein, Papain-like protease, and Main protease) and host proteins (ACE2, Importin-subunit α-5, and ß-1). Phytochemicals showing higher binding affinity with the dual capacity to target both the categories of proteins were further analyzed by profiling of their chemical reactivity using Density-Functional Theory (DFT) based quantum chemical methods. Finally, detailed molecular dynamics simulations were performed to analyze the interactions of the complexes. RESULTS AND CONCLUSION: The results revealed that the selected phytochemicals from Andrographis paniculata, Aconitum heterophyllum, Costus speciosus and Inula racemosa may have the capacity to act with prominent affinity towards the host and viral proteins. Therefore, the combination of active phytochemicals of these plants may prove to be more beneficial and can be used for developing the potential phytotherapeutic intervention.

3.
Int Immunopharmacol ; 86: 106760, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-634138

ABSTRACT

Due to the vastness of the science virology, it is no longer an offshoot solely of the microbiology. Viruses have become as the causative agents of major epidemics throughout history. Many therapeutic strategies have been used for these microorganisms, and in this way the recognizing of potential targets of viruses is of particular importance for success. For decades, antibodies and antibody fragments have occupied a significant body of the treatment approaches against infectious diseases. Because of their high affinity, they can be designed and engineered against a variety of purposes, mainly since antibody fragments such as scFv, nanobody, diabody, and bispecific antibody have emerged owing to their small size and interesting properties. In this review, we have discussed the antibody discovery and molecular and biological design of antibody fragments as inspiring therapeutic and diagnostic agents against viral targets.


Subject(s)
Antibodies, Viral/therapeutic use , Betacoronavirus/immunology , Biological Products/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Animals , Antibodies, Bispecific/immunology , Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/immunology , Biological Products/immunology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Disease Models, Animal , Drug Design , Drug Discovery , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Single-Domain Antibodies/immunology , Single-Domain Antibodies/therapeutic use , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL